کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6864737 1439550 2018 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel based online learning for imbalance multiclass classification
ترجمه فارسی عنوان
هسته مبتنی بر آموزش آنلاین برای طبقه بندی چند طبقه چندمنظوره است
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In this paper, we propose a weighted online sequential extreme learning machine with kernels (WOS-ELMK) for class imbalance learning (CIL). The existing online sequential extreme learning machine (OS-ELM) methods for CIL use random feature mapping. WOS-ELMK is the first OS-ELM method which uses kernel mapping for online class imbalance learning. The kernel mapping avoids the non-optimal hidden node problem associated with weighted OS-ELM (WOS-ELM) and other existing OS-ELM methods for CIL. WOS-ELMK tackles both the binary class and multiclass imbalance problems in one-by-one as well as chunk-by-chunk learning modes. For imbalanced big data streams, a fixed size window scheme is also implemented for WOS-ELMK. We empirically show that WOS-ELMK obtains superior performance in general than some recently proposed CIL approaches on 17 binary class and 8 multiclass imbalanced datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 277, 14 February 2018, Pages 139-148
نویسندگان
, , , , , , ,