| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6864780 | 1439552 | 2018 | 9 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Optimization of coke ratio for the second proportioning phase in a sintering process base on a model of temperature field of material layer
												
											ترجمه فارسی عنوان
													بهینه سازی نسبت کک برای مرحله دوم نسبت در یک روش فرایند پخت بر اساس یک مدل از زمینه دما از لایه مواد 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												Coke ratio for a sintering process is often determined by experience because models of calculating a coke ratio are very complicated, and are hard to be used in practice. This paper presents a three-step optimization method to find a coke ratio that meets the requirements for commercial operations. First, a back-propagation neural network (BPNN) for temperature field of the material layer (TFML) is built to calculate a mass of sinter cake of a sintering process. Then, the energy flow in a sintering process is analyzed, and a theoretical value of the coke ratio is calculated. Finally, the optimization problem for the second portioning phase is formulated that takes into consideration of the conventional constraints, such as material balance, chemical composition, required quality, etc., and a coke ratio constraint based on the theoretical value. This benefits the reduction of CO2 for the sintering process. Numerical verification has shown the validity of the method.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 10-18
											Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 10-18
نویسندگان
												Min Wu, Junjie Ma, Jie Hu, Xin Chen, Weihua Cao, Jinhua She, 
											