کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6864817 1439552 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An adaptive kernel regression method for 3D ultrasound reconstruction using speckle prior and parallel GPU implementation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An adaptive kernel regression method for 3D ultrasound reconstruction using speckle prior and parallel GPU implementation
چکیده انگلیسی
Freehand three-dimensional (3D) ultrasound imaging is an attractive research area because it is capable of providing large field of view and high in-plane resolution image to allow better illustration of complex anatomy structures. However, reconstructed image is corrupted with speckle noise and artifacts in the conventional reconstructed volume data. In this paper, we propose a simple but effective adaptive kernel regression method for volume reconstruction from freehand swept B-scan images. By creating a linear model for estimating the homogeneous region of the B-scan image and learning the parameters of the model with a supervised learning method, the statistical characteristic of speckle can be well recovered. With the learned linear model of speckle, we can easily estimate the homogenous region and reconstruct image with speckle reduction and edge preservation via the adaptive turning of the smoothing parameters of the kernel regression. Our algorithm lends itself to parallel processing, and yields a 288× speedup on a graphics processing unit (GPU). Experiments on the simulated data, ultrasonic abdominal phantom and in-vivo liver of human subject and comparisons with some classical and recent algorithms are used to demonstrate its improvements in both volume reconstruction accuracy and efficiency.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 208-223
نویسندگان
, , , , , ,