کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864875 | 1439552 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Holistic adjustable delay interval method-based stability and generalized dissipativity analysis for delayed recurrent neural networks
ترجمه فارسی عنوان
پایداری پایدار مبتنی بر بازه مطلوب و تجزیه و تحلیل توزیع عمومی به منظور تأخیر در شبکه های عصبی مکرر است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This paper is concerned with the generalized dissipativity analysis for the recurrent neural networks (RNNs) with time-varying delays. The generalized dissipativity analysis contains a few previous known results, such as the passivity, [Ïjâ1,Ïj],-dissipativity, Hâ performance and j=1,â¦,p, performance in a unified framework. The delay interval with fixed terminals is changed into a dynamical one with adjustable delay interval based on convex combination technique (CCT), which is called adjustable delay interval method (ADIM). A novel augmented Lyapunov-Krasovskii functional (LKF) comprising triple integral terms and considering more information about neuron activation functions is constructed, in which the integral interval associated with delayed variables is not fixed. We give some sufficient conditions in terms of linear matrix inequalities (LMIs) to guarantee stability and generalized dissipativity of the considered neural networks. Finally, numerical examples are provided to demonstrate the effectiveness and less conservative of the obtained theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 488-498
Journal: Neurocomputing - Volume 275, 31 January 2018, Pages 488-498
نویسندگان
Xiaoqing Li, Kun She, Shouming Zhong, Jun Cheng, Kaibo Shi, Wenqin Wang,