کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865031 | 1439554 | 2018 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Class-balanced siamese neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper focuses on metric learning with Siamese Neural Networks (SNN). Without any prior, SNNs learn to compute a non-linear metric using only similarity and dissimilarity relationships between input data. Our SNN model proposes three contributions: a tuple-based architecture, an objective function with a norm regularisation and a polar sine-based angular reformulation for cosine dissimilarity learning. Applying our SNN model for Human Action Recognition (HAR) gives very competitive results using only one accelerometer or one motion capture point on the Multimodal Human Action Dataset (MHAD). Performances and properties of our proposals in terms of accuracy, convergence and complexity are assessed, with very favourable results. Additional experiments on the ”Challenge for Multimodal Mid-Air Gesture Recognition for Close Human Computer Interaction” Dataset (ChAirGest) confirm the competitive comparison of our proposals with state-of-the-arts models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 47-56
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 47-56
نویسندگان
Samuel Berlemont, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia,