کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865069 | 1439554 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A personalized point-of-interest recommendation model via fusion of geo-social information
ترجمه فارسی عنوان
یک نمونه توصیه شده از نقطه مورد علاقه از طریق تلفیق اطلاعات جغرافیایی و اجتماعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تقسیم ماتریس، نقطه مورد علاقه، توصیه ها، اطلاعات جغرافیایی، اطلاعات اجتماعی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Recently, as location-based social networks (LBSNs) rapidly grow, general users utilize point-of-interest recommender systems to discover attractive locations. Most existing POI recommendation algorithms always employ the check-in data and rich contextual information (e.g., geographical information and users' social network information) of users to learn their preference on POIs. Unfortunately, these studies generally suffer from two major limitations: (1) when modeling geographical influence, users' personalized behavior differences are ignored; (2) when modeling the users' social influence, the implicit social influence is seldom exploited. In this paper, we propose a novel POI recommendation approach called GeoEISo. GeoEISo achieves three key goals in this work. (1) We develop a kernel estimation method with a self-adaptive kernel bandwidth to model the geographical influence between POIs. (2) We use the Gaussian radial basis kernel function based support vector regression (SVR) model to predict explicit trust values between users, and then devise a novel trust-based recommendation model to simultaneously incorporate both the explicit and implicit social trust information into the process of POI recommendation. (3) We develop a unified geo-social framework which combines users' preference on a POI with the geographical influence as well as social correlations. Experimental results on two real-world datasets collected from Foursquare show that GeoEISo provides significantly superior performances compared to other state-of-the-art POI recommendation models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 159-170
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 159-170
نویسندگان
Rong Gao, Jing Li, Xuefei Li, Chengfang Song, Yifei Zhou,