| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6865078 | 1439554 | 2018 | 24 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Auxiliary learning for crowd counting via count-net
												
											ترجمه فارسی عنوان
													یادگیری کمکی برای شمارش جمعیت از طریق شبکه شمارش 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												This paper aims to develop a simple but effective method that can estimate the number of people in still images. Inspired by the successful applications of deep learning and the appearance of crowd, we design a count-net based on Convolutional Neural Network (CNN). The count-net takes the appearance of crowd as auxiliary mechanism, thus filtering out most of the backgrounds and focusing more on people's heads. In addition, we adopt a separated-aggregated framework since the structure of crowd in an image is rarely uniform. Firstly, we separate the crowd image into patches to treat different spatial locations discriminatively. Afterwards, these patches and the manual marked labels are fed into a count-net to train the parameters of this network. For practical application, only the counting channel of the count-net is demanded. Finally, the numbers of people in patches that belong to one image are summed as the output of the whole framework. Experimental results conducted on UCF and AHU-CROWD datasets demonstrate the superiority of our proposed method.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 190-198
											Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 190-198
نویسندگان
												Youmei Zhang, Faliang Chang, Mengdi Wang, Fulei Zhang, Chao Han, 
											