کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865213 | 1439554 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Facial expression recognition via learning deep sparse autoencoders
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Facial expression recognition is an important research issue in the pattern recognition field. In this paper, we intend to present a novel framework for facial expression recognition to automatically distinguish the expressions with high accuracy. Especially, a high-dimensional feature composed by the combination of the facial geometric and appearance features is introduced to the facial expression recognition due to its containing the accurate and comprehensive information of emotions. Furthermore, the deep sparse autoencoders (DSAE) are established to recognize the facial expressions with high accuracy by learning robust and discriminative features from the data. The experiment results indicate that the presented framework can achieve a high recognition accuracy of 95.79% on the extended Cohn-Kanade (CK+) database for seven facial expressions, which outperforms the other three state-of-the-art methods by as much as 3.17%, 4.09% and 7.41%, respectively. In particular, the presented approach is also applied to recognize eight facial expressions (including the neutral) and it provides a satisfactory recognition accuracy, which successfully demonstrates the feasibility and effectiveness of the approach in this paper.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 643-649
Journal: Neurocomputing - Volume 273, 17 January 2018, Pages 643-649
نویسندگان
Nianyin Zeng, Hong Zhang, Baoye Song, Weibo Liu, Yurong Li, Abdullah M. Dobaie,