کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865287 | 1439555 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural network-based event-triggered MFAC for nonlinear discrete-time processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper is concerned with the event-triggered data-driven control problem for nonlinear discrete-time systems. An event-based data-driven model-free adaptive controller design algorithm together with constructing an adaptive event-trigger condition is developed. Different from the existing data-driven model-free adaptive control approach, an aperiodic neural network weight update law is introduced to estimate the controller parameters, and the event-trigger mechanism is activated only if the event-trigger error exceeds the threshold. Furthermore, by combining the equivalent-dynamic-linearization technique with the Lyapunov method, it is proved that both the closed-loop control system and the weight estimation error are ultimately bounded. Finally, two simulation examples are provided to demonstrate the effectiveness of the derived method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 272, 10 January 2018, Pages 356-364
Journal: Neurocomputing - Volume 272, 10 January 2018, Pages 356-364
نویسندگان
Dong Liu, Guang-Hong Yang,