کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6865582 679059 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
EasyMKL: a scalable multiple kernel learning algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
EasyMKL: a scalable multiple kernel learning algorithm
چکیده انگلیسی
The goal of Multiple Kernel Learning (MKL) is to combine kernels derived from multiple sources in a data-driven way with the aim to enhance the accuracy of a target kernel machine. State-of-the-art methods of MKL have the drawback that the time required to solve the associated optimization problem grows (typically more than linearly) with the number of kernels to combine. Moreover, it has been empirically observed that even sophisticated methods often do not significantly outperform the simple average of kernels. In this paper, we propose a time and space efficient MKL algorithm that can easily cope with hundreds of thousands of kernels and more. The proposed method has been compared with other baselines (random, average, etc.) and three state-of-the-art MKL methods showing that our approach is often superior. We show empirically that the advantage of using the method proposed in this paper is even clearer when noise features are added. Finally, we have analyzed how our algorithm changes its performance with respect to the number of examples in the training set and the number of kernels combined.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 169, 2 December 2015, Pages 215-224
نویسندگان
, ,