کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6865600 679059 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Choosing ℓp norms in high-dimensional spaces based on hub analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Choosing ℓp norms in high-dimensional spaces based on hub analysis
چکیده انگلیسی
The hubness phenomenon is a recently discovered aspect of the curse of dimensionality. Hub objects have a small distance to an exceptionally large number of data points while anti-hubs lie far from all other data points. A closely related problem is the concentration of distances in high-dimensional spaces. Previous work has already advocated the use of fractional ℓp norms instead of the ubiquitous Euclidean norm to avoid the negative effects of distance concentration. However, which exact fractional norm to use is a largely unsolved problem. The contribution of this work is an empirical analysis of the relation of different ℓp norms and hubness. We propose an unsupervised approach for choosing an ℓp norm which minimizes hubs while simultaneously maximizing nearest neighbor classification. Our approach is evaluated on seven high-dimensional data sets and compared to three approaches that re-scale distances to avoid hubness.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 169, 2 December 2015, Pages 281-287
نویسندگان
, ,