کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6865671 678082 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vector quantization based on ε-insensitive mixture models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Vector quantization based on ε-insensitive mixture models
چکیده انگلیسی
Laplacian mixture models have been used to deal with heavy-tailed distributions in data modeling problems. We consider an extension of Laplacian mixture models, which consists of ε-insensitive component distributions. An EM-type learning algorithm is derived for the maximum likelihood estimation of the proposed mixture model. The E-step is formulated in the usual way, while the M-step is formulated as the dual optimization problem instead of the primal optimization problem. Additionally, the convergence proof for ε=0 is accomplished. As an analogy to the k-means algorithm, we obtain what we call the ei-means algorithm in a certain limit of the learning algorithm. The derived algorithm is applied to approximate computation of rate-distortion functions associated with the ε-insensitive loss function. Then, it is demonstrated by synthetic data and real-world Spambase data that with appropriate selection of the ε value, the model is able to tolerate small percentage of noisy data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 165, 1 October 2015, Pages 32-37
نویسندگان
,