کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865671 | 678082 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Vector quantization based on ε-insensitive mixture models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Laplacian mixture models have been used to deal with heavy-tailed distributions in data modeling problems. We consider an extension of Laplacian mixture models, which consists of ε-insensitive component distributions. An EM-type learning algorithm is derived for the maximum likelihood estimation of the proposed mixture model. The E-step is formulated in the usual way, while the M-step is formulated as the dual optimization problem instead of the primal optimization problem. Additionally, the convergence proof for ε=0 is accomplished. As an analogy to the k-means algorithm, we obtain what we call the ei-means algorithm in a certain limit of the learning algorithm. The derived algorithm is applied to approximate computation of rate-distortion functions associated with the ε-insensitive loss function. Then, it is demonstrated by synthetic data and real-world Spambase data that with appropriate selection of the ε value, the model is able to tolerate small percentage of noisy data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 165, 1 October 2015, Pages 32-37
Journal: Neurocomputing - Volume 165, 1 October 2015, Pages 32-37
نویسندگان
Kazuho Watanabe,