کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865869 | 678089 | 2015 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel discriminant criterion based on feature fusion strategy for face recognition
ترجمه فارسی عنوان
معیار جدید تبعیض بر اساس استراتژی فیوژن ویژگی برای تشخیص چهره
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص چهره، ساختار اقلیدسی، ساختار منیفولد،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Feature extraction is an important problem in face recognition. There are two kinds of structural features, namely the Euclidean structure and the manifold structure. However, the single-structural feature extraction methods cannot fully utilize the advantages of global feature and local feature simultaneously. Thus their performances will be degraded. To overcome the limitations of the single-structural feature based face recognition schemes, this paper proposes a novel discriminant criterion using Feature Fusion Strategy (FFS), which nonlinearly combines both Euclidean and manifold structures in the face pattern space. The proposed discriminant criterion is suitable to develop an iterative algorithm. It is able to automatically determine the optimal parameters and balance the tradeoff between Euclidean structure and manifold structure. The proposed FFS algorithm is successfully applied to face recognition. Three publicly available face databases, ORL, FERET and CMU PIE, are selected for evaluation. Compared with Linear Discriminant Analysis (LDA), Locality Preserving Projection (LPP), Unsupervised Discriminant Projection (UDP) and Semi-Supervised LDA (SSLDA), the experimental results show that the proposed method gives superior performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 159, 2 July 2015, Pages 67-77
Journal: Neurocomputing - Volume 159, 2 July 2015, Pages 67-77
نویسندگان
Wen-Sheng Chen, Xiuli Dai, Binbin Pan, Taiquan Huang,