کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6865874 678089 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence of Rprop and variants
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Convergence of Rprop and variants
چکیده انگلیسی
This paper examines conditions under which the Resilient Propagation algorithm, Rprop, fails to converge, identifies limitations of the so-called Globally Convergent Rprop algorithm, GRprop, which was previously thought to guarantee convergence, and considers pathological behaviour of the implementation of GRprop in the neuralnet software package. A new robust convergent back-propagation algorithm, ARCprop, is presented. The new algorithm builds on Rprop, but guarantees convergence by shortening steps as necessary to achieve a sufficient reduction in global error. Simulation results on four benchmark problems from the PROBEN1 collection show that the new algorithm achieves similar levels of performance to Rprop in terms of training speed, training accuracy, and generalization.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 159, 2 July 2015, Pages 90-95
نویسندگان
,