کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6866003 679603 2015 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global exponential stability and periodic solutions of high-order bidirectional associative memory (BAM) neural networks with time delays and impulses
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Global exponential stability and periodic solutions of high-order bidirectional associative memory (BAM) neural networks with time delays and impulses
چکیده انگلیسی
High-order bidirectional associative memory (BAM) neural networks with mixed features such as time delays and impulses play an increasingly important role in the design and implementation of neural network systems. It exhibits advantage of stronger approximation property, faster convergence rate, greater storage capacity and higher fault tolerance than low-order neural networks. In this paper, issues of both stability and periodicity for a class of high-order BAM neural networks with time delays and impulses are investigated. With M-matrix theory, linear matrix inequality technique, fixed point theorem and Lyapunov approach, we derive new sufficient conditions for achieving global exponential stability of equilibrium point and the existence and global exponential stability of periodic solutions for the addressed high-order BAM neural networks. Numerical examples are provided to demonstrate the effectiveness of the proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 155, 1 May 2015, Pages 261-276
نویسندگان
, , ,