کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866129 | 679096 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Large scale multi-class classification with truncated nuclear norm regularization
ترجمه فارسی عنوان
طبقه بندی چند طبقه ای با مقیاس بزرگ با تنظیم مقررات هسته ای کوتاه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
هسته هسته ی کوتاه شده، الگوریتم نسبی مختصات، طبقه بندی چند طبقه
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, we consider the problem of multi-class image classification when the classes behaviour has a low rank structure. That is, classes can be embedded into a low dimensional space. Traditional multi-class classification algorithms usually use nuclear norm to approximate the rank of the weight matrix. Considering the limited ability of the nuclear norm for the accurate approximation, we propose a new scalable large scale multi-class classification algorithm by using the recently proposed truncated nuclear norm as a better surrogate of the rank operator of matrices along with multinomial logisitic loss. To solve the non-convex and non-smooth optimization problem, we further develop an efficient iterative procedure. In each iteration, by lifting the non-smooth convex subproblem into an infinite dimensional â1 norm regularized problem, a simple and efficient accelerated coordinate descent algorithm is applied to find the optimal solution. We conduct a series of evaluations on several public large scale image datasets, where the experimental results show the encouraging improvement of classification accuracy of the proposed algorithm in comparison with the state-of-the-art multi-class classification algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 148, 19 January 2015, Pages 310-317
Journal: Neurocomputing - Volume 148, 19 January 2015, Pages 310-317
نویسندگان
Yao Hu, Zhongming Jin, Yi Shi, Debing Zhang, Deng Cai, Xiaofei He,