کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866476 | 678171 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sparse representations based attribute learning for flower classification
ترجمه فارسی عنوان
تفسیرهای انعطاف پذیر بر اساس ویژگی یادگیری برای طبقه بندی گل ها
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی گل ها، یادگیری متمایز، نمایندگی انحصاری، مشخص کردن کاهش،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Classification for flowers is a very difficult task. Traditional methods need to built a classifier for each flower category, and obtain large number of flower samples to train these classifiers. In practice, many different types of flowers make the job become very difficult and boring. In this work, we present an attribute based approach for flowers recognition. Particularly, instead of training for a specific category of flowers directly based on manually designed features such as SIFT and HoG, we extract a series of visual attributes from a given set of flower images and generalize these to new images with possibly unknown flowers. A recently proposed sparse representations classification scheme is employed to predict the attributes of a given flower image from any category. In addition, we use a genetic algorithm to find the most discriminative attributes among others for better performance during the stage of flower classification. The effectiveness of the proposed method is validated on a publicly available flower classification database with promising results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 145, 5 December 2014, Pages 416-426
Journal: Neurocomputing - Volume 145, 5 December 2014, Pages 416-426
نویسندگان
Keyang Cheng, Xiaoyang Tan,