کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866551 | 679631 | 2014 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discriminality-driven regularization framework for indefinite kernel machine
ترجمه فارسی عنوان
چارچوب تنظیم درست شده توسط تبعیض آمیز برای دستگاه کرنل نامحدود
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
رفع تبعیض مبتنی بر تبعیض، دستگاه هسته نامحدود، یادگیری نیمه نظارتی، فراگیری ماشین،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Indefinite kernel machines have attracted more and more interests in machine learning due to their better empirical classification performance than the common positive definite kernel machines in many applications. A key to implement effective kernel machine is how to use prior knowledge as sufficiently as possible to guide the appropriate construction of the kernels. However, most of existing indefinite kernel machines actually utilize the knowledge involved in data such as discriminative and structural information insufficiently and thus construct the indefinite kernels empirically. Discriminatively regularized least-squares classification (DRLSC) is a recently-proposed supervised classification method which provides a new discriminality-driven regularizer to encourage the discriminality of the classifier rather than the common smoothness. In this paper, we rigorously validate that the discriminative regularizer actually coincides with the definition on the inner product in Reproducing Kernel KreÇn Space (RKKS) naturally. As a result, we further present a new discriminality-driven regularization framework for indefinite kernel machine based on the discriminative regularizer. According to the framework, we firstly reintroduce the original DRLSC from the viewpoint of the proper indefinite kernelization rather than the empirical kernel mapping. Then a novel semi-supervised algorithm is proposed in terms of different definition on the regularizer. The experiments on both toy and real-world datasets demonstrate the superiority of the two algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 133, 10 June 2014, Pages 209-221
Journal: Neurocomputing - Volume 133, 10 June 2014, Pages 209-221
نویسندگان
Hui Xue, Songcan Chen,