کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866587 | 678246 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Rapid multimodality registration based on MM-SURF
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
With a large number of registration algorithms proposed, image registration techniques have achieved rapid development. However, there still exist many deficiencies in multimodality registration where high speed and accuracy are difficult to simultaneously achieve for real-time processing. In order to solve these problems we propose a novel method named MM-SURF (Multimodal-SURF). Inheriting the advantages of the SURF, the method is able to generate a large number of robust keypoints. For each keypoint, the neighborhood gradient magnitude is utilized to compute its dominant orientation. Relying on the dominant orientation, a MM-SURF descriptor is constructed as the local features description of the keypoint. The geometric transformation matrix for multimodal image registration is obtained by matching the keypoints. The method makes full use of gray information of multimodal images and simultaneously inherits the good performance of the SURF. Experimental results indicate that the proposed method achieves higher accuracy and consumes less runtime than the other similar algorithms for multimodal image registrations, and also demonstrate its robustness and stability in the presence of image blurring, rotation, noise and luminance variations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 131, 5 May 2014, Pages 87-97
Journal: Neurocomputing - Volume 131, 5 May 2014, Pages 87-97
نویسندگان
Dong Zhao, Yan Yang, Zhihang Ji, Xiaopeng Hu,