کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866803 | 679063 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TPPFAM: Use of threshold and posterior probability for category reduction in fuzzy ARTMAP
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The issue of category proliferation caused by the overlapping classes in fuzzy ARTMAP (FAM) is addressed in this paper. A new FAM-based neural architecture called TTPFAM is proposed, which can reduce category proliferation by performing a threshold filtering mechanism before a new category created during training, and improve the classification accuracy by combining prediction distributed by the dynamic Q-max rule and posterior probability estimated during testing. The TPPFAM can produce a small size of neural network architecture without degradation of the classification accuracy. The algorithm is evaluated in terms of the classification accuracy and the number of categories by experiments on both artificial and real data, and the results show that the performance of TPPFAM is better than that of the other models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 124, 26 January 2014, Pages 63-71
Journal: Neurocomputing - Volume 124, 26 January 2014, Pages 63-71
نویسندگان
Yongquan Zhang, Hongbing Ji, Wenbo Zhang,