کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6867118 | 1439837 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Slippage prediction for off-road mobile robots via machine learning regression and proprioceptive sensing
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new approach for predicting slippage associated with individual wheels in off-road mobile robots. More specifically, machine learning regression algorithms are trained considering proprioceptive sensing. This contribution is validated by using the MIT single-wheel testbed equipped with an MSL spare wheel. The combination of IMU-related and torque-related features outperforms the torque-related features only. Gaussian process regression results in a proper trade-off between accuracy and computation time. Another advantage of this algorithm is that it returns the variance associated with each prediction, which might be used for future route planning and control tasks. The paper also provides a comparison between machine learning regression and classification algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Robotics and Autonomous Systems - Volume 105, July 2018, Pages 85-93
Journal: Robotics and Autonomous Systems - Volume 105, July 2018, Pages 85-93
نویسندگان
Ramon Gonzalez, Mirko Fiacchini, Karl Iagnemma,