کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6868393 1439973 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the separability of stochastic geometric objects, with applications
ترجمه فارسی عنوان
در جداسازی اشیاء هندسی تصادفی با برنامه ها
کلمات کلیدی
اشیاء تصادفی، جداسازی خطی، احتمال جداسازی، انتظار اختلاط حاشیه، پوست کنده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
In this paper, we study the linear separability problem for stochastic geometric objects under the well-known unipoint and multipoint uncertainty models. Let S=SR∪SB be a given set of stochastic bichromatic points, and define n=min⁡{|SR|,|SB|} and N=max⁡{|SR|,|SB|}. We show that the separable-probability (SP) of S can be computed in O(nNd−1) time for d≥3 and O(min⁡{nNlog⁡N,N2}) time for d=2, while the expected separation-margin (ESM) of S can be computed in O(nNd) time for d≥2. In addition, we give an Ω(nNd−1)witness-based lower bound for computing SP, which implies the optimality of our algorithm among all those in this category. Also, a hardness result for computing ESM is given to show the difficulty of further improving our algorithm. As an extension, we generalize the same problems from points to general geometric objects, i.e., polytopes and/or balls, and extend our algorithms to solve the generalized SP and ESM problems in O(nNd) and O(nNd+1) time, respectively. Finally, we present some applications of our algorithms to stochastic convex hull-related problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Geometry - Volume 74, October 2018, Pages 1-20
نویسندگان
, , ,