کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6868650 | 1440030 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Balanced estimation for high-dimensional measurement error models
ترجمه فارسی عنوان
برآورد متعادل برای مدل خطای اندازه گیری با ابعاد بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Noisy and missing data are often encountered in real applications such that the observed covariates contain measurement errors. Despite the rapid progress of model selection with contaminated covariates in high dimensions, methodology that enjoys virtues in all aspects of prediction, variable selection, and computation remains largely unexplored. In this paper, we propose a new method called as the balanced estimation for high-dimensional error-in-variables regression to achieve an ideal balance between prediction and variable selection under both additive and multiplicative measurement errors. It combines the strengths of the nearest positive semi-definite projection and the combined L1
and concave regularization, and thus can be efficiently solved through the coordinate optimization algorithm. We also provide theoretical guarantees for the proposed methodology by establishing the oracle prediction and estimation error bounds equivalent to those for Lasso with the clean data set, as well as an explicit and asymptotically vanishing bound on the false sign rate that controls overfitting, a serious problem under measurement errors. Our numerical studies show that the amelioration of variable selection will in turn improve the prediction and estimation performance under measurement errors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 126, October 2018, Pages 78-91
Journal: Computational Statistics & Data Analysis - Volume 126, October 2018, Pages 78-91
نویسندگان
Zemin Zheng, Yang Li, Chongxiu Yu, Gaorong Li,