کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
6868715 1440032 2018 17 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse principal component regression for generalized linear models
ترجمه فارسی عنوان
رگرسیون جزء اصلی برای مدل های خطی تعمیم یافته است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Principal component regression (PCR) is a widely used two-stage procedure: principal component analysis (PCA), followed by regression in which the selected principal components are regarded as new explanatory variables in the model. Note that PCA is based only on the explanatory variables, so the principal components are not selected using the information on the response variable. We propose a one-stage procedure for PCR in the framework of generalized linear models. The basic loss function is based on a combination of the regression loss and PCA loss. An estimate of the regression parameter is obtained as the minimizer of the basic loss function with a sparse penalty. We call the proposed method sparse principal component regression for generalized linear models (SPCR-glm). Taking the two loss function into consideration simultaneously, SPCR-glm enables us to obtain sparse principal component loadings that are related to a response variable. However, a combination of loss functions may cause a parameter identification problem, but this potential problem is avoided by virtue of the sparse penalty. Thus, the sparse penalty plays two roles in this method. We apply SPCR-glm to two real datasets, doctor visits data and mouse consomic strain data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 124, August 2018, Pages 180-196
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت