کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6868906 | 681345 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Normal-Gamma-Bernoulli peak detection for analysis of comprehensive two-dimensional gas chromatography mass spectrometry data
ترجمه فارسی عنوان
تشخیص پیک نورمال گاما برنولی برای تجزیه و تحلیل داده های طیف سنجی جرمی کروماتوگرافی جامع دو بعدی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Compared to other analytical platforms, comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GCÃGC-MS) has much increased separation power for analysis of complex samples and thus is increasingly used in metabolomics for biomarker discovery. However, accurate peak detection remains a bottleneck for wide applications of GCÃGC-MS. Therefore, the normal-exponential-Bernoulli (NEB) model is generalized by gamma distribution and a new peak detection algorithm using the Normal-Gamma-Bernoulli (NGB) model is developed. Unlike the NEB model, the NGB model has no closed-form analytical solution, hampering its practical use in peak detection. To circumvent this difficulty, three numerical approaches, which are fast Fourier transform (FFT), the first-order and the second-order delta methods (D1 and D2), are introduced. The applications to simulated data and two real GCÃGC-MS data sets show that the NGB-D1 method performs the best in terms of both computational expense and peak detection performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 105, January 2017, Pages 96-111
Journal: Computational Statistics & Data Analysis - Volume 105, January 2017, Pages 96-111
نویسندگان
Seongho Kim, Hyejeong Jang, Imhoi Koo, Joohyoung Lee, Xiang Zhang,