کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6869008 681310 2016 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inference and mixture modeling with the Elliptical Gamma Distribution
ترجمه فارسی عنوان
استنتاج و مدل سازی مخلوط با توزیع گامای بیضی
کلمات کلیدی
حداکثر احتمال، گامای بیضوی، توزیع ناپیوسته کانونی، بهینه سازی هندسی مخروطی، بهینه سازی غیرقانونی جهانی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
The authors study modeling and inference with the Elliptical Gamma Distribution (EGD). In particular, Maximum likelihood (ML) estimation for EGD scatter matrices is considered, a task for which the authors present new fixed-point algorithms. The algorithms are shown to be efficient and convergent to global optima despite non-convexity. Moreover, they turn out to be much faster than both a well-known iterative algorithm of Kent & Tyler and sophisticated manifold optimization algorithms. Subsequently, the ML algorithms are invoked as subroutines for estimating parameters of a mixture of EGDs. The performance of the methods is illustrated on the task of modeling natural image statistics-the proposed EGD mixture model yields the most parsimonious model among several competing approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 101, September 2016, Pages 29-43
نویسندگان
, , , ,