کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6869602 681506 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nested nonnegative cone analysis
ترجمه فارسی عنوان
تجزیه و تحلیل مخروطی غیر منفی مشتق شده
کلمات کلیدی
استنتاج محدود تجزیه و تحلیل داده های عملکردی، یادگیری مستهجن، فاکتورسازی ماتریس غیر انتزاعی، داده های شی گرا، تجزیه و تحلیل مولفه اصلی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Motivated by the analysis of nonnegative data objects, a novel Nested Nonnegative Cone Analysis (NNCA) approach is proposed to overcome some drawbacks of existing methods. The application of traditional PCA/SVD method to nonnegative data often cause the approximation matrix leave the nonnegative cone, which leads to non-interpretable and sometimes nonsensical results. The nonnegative matrix factorization (NMF) approach overcomes this issue, however the NMF approximation matrices suffer several drawbacks: (1) the factorization may not be unique, (2) the resulting approximation matrix at a specific rank may not be unique, and (3) the subspaces spanned by the approximation matrices at different ranks may not be nested. These drawbacks will cause troubles in determining the number of components and in multi-scale (in ranks) interpretability. The NNCA approach proposed in this paper naturally generates a nested structure, and is shown to be unique at each rank. Simulations are used in this paper to illustrate the drawbacks of the traditional methods, and the usefulness of the NNCA method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 88, August 2015, Pages 100-110
نویسندگان
, , ,