کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6869617 | 681506 | 2015 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mixture model selection via hierarchical BIC
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Bayesian information criterion (BIC) is one of the most popular criteria for model selection in finite mixture models. However, it implausibly penalizes the complexity of each component using the whole sample size and completely ignores the clustered structure inherent in the data, resulting in over-penalization. To overcome this problem, a novel criterion called hierarchical BIC (HBIC) is proposed which penalizes the component complexity only using its local sample size and matches the clustered data structure well. Theoretically, HBIC is an approximation of the variational Bayesian (VB) lower bound when sample size is large and the widely used BIC is a less accurate approximation. An empirical study is conducted to verify this theoretical result and a series of experiments is performed on simulated and real data sets to compare HBIC and BIC. The results show that HBIC outperforms BIC substantially and BIC suffers from underestimation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 88, August 2015, Pages 139-153
Journal: Computational Statistics & Data Analysis - Volume 88, August 2015, Pages 139-153
نویسندگان
Jianhua Zhao, Libin Jin, Lei Shi,