کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6870804 | 681149 | 2013 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generative models for functional data using phase and amplitude separation
ترجمه فارسی عنوان
مدل های تولیدی برای داده های عملکردی با استفاده از جدایی فاز و دامنه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
متغیر دامنه، تراز کاری تابع تجزیه و تحلیل مولفه اصلی، تجزیه و تحلیل داده های عملکردی، مدل تولیدی متغیر فاز،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Constructing generative models for functional observations is an important task in statistical functional analysis. In general, functional data contains both phase (or x or horizontal) and amplitude (or y or vertical) variability. Traditional methods often ignore the phase variability and focus solely on the amplitude variation, using cross-sectional techniques such as fPCA for dimensional reduction and data modeling. Ignoring phase variability leads to a loss of structure in the data and inefficiency in data models. This paper presents an approach that relies on separating the phase (x-axis) and amplitude (y-axis), then modeling these components using joint distributions. This separation, in turn, is performed using a technique called elastic shape analysis of curves that involves a new mathematical representation of functional data. Then, using individual fPCAs, one each for phase and amplitude components, it imposes joint probability models on principal coefficients of these components while respecting the nonlinear geometry of the phase representation space. These ideas are demonstrated using random sampling, for models estimated from simulated and real datasets, and show their superiority over models that ignore phase-amplitude separation. Furthermore, the generative models are applied to classification of functional data and achieve high performance in applications involving SONAR signals of underwater objects, handwritten signatures, and periodic body movements recorded by smart phones.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 61, May 2013, Pages 50-66
Journal: Computational Statistics & Data Analysis - Volume 61, May 2013, Pages 50-66
نویسندگان
J. Derek Tucker, Wei Wu, Anuj Srivastava,