کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6870806 | 681149 | 2013 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A pure L1-norm principal component analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The L1 norm has been applied in numerous variations of principal component analysis (PCA). An L1-norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes that recast PCA as an optimization problem involving the L1 norm, none provide globally optimal solutions in polynomial time. This paper proposes an L1-norm PCA procedure based on the efficient calculation of the optimal solution of the L1-norm best-fit hyperplane problem. We present a procedure called L1-PCAâ based on the application of this idea that fits data to subspaces of successively smaller dimension. The procedure is implemented and tested on a diverse problem suite. Our tests show that L1-PCAâ is the indicated procedure in the presence of unbalanced outlier contamination.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 61, May 2013, Pages 83-98
Journal: Computational Statistics & Data Analysis - Volume 61, May 2013, Pages 83-98
نویسندگان
J.P. Brooks, J.H. Dulá, E.L. Boone,