کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6871106 | 1440178 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A min-max relation in flowgraphs and some applications
ترجمه فارسی عنوان
رابطه معکوس و حداکثر در نمودار جریان و برخی از برنامه های کاربردی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
A flowgraph G=(V,A,s) is a digraph such that there is a dipath from s to u for every vertex u in G. A vertex w dominates a vertex u if and only if all dipaths in G from s to u pass through w. The vertex s dominates trivially any vertex in G. In this work, we define two sets called dominator cover and junction partition. A dominator cover in G is a set of vertices that includes s and non-trivial dominators for all vertices in G. A junction partition B={B1,â¦,Bk} is a partition of V which satisfies the following property: if vertex u belongs to Bi and vertex v belongs to Bj (iâ j), then there are internally vertex-disjoint dipaths from s to u and from s to v, for short, s is a junction of u and v. The first part of this work shows that, in flowgraphs, the minimum size of a dominator cover is equal to the maximum size of a junction partition. The second part describes some applications for this relation, such as, a new correctness proof of an algorithm that finds a maximum junction partition in reducible flowgraphs; and good time and space complexity algorithms for problems related to junctions and nearest common ancestors in acyclic digraphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 245, 20 August 2018, Pages 65-76
Journal: Discrete Applied Mathematics - Volume 245, 20 August 2018, Pages 65-76
نویسندگان
Carlos Eduardo Ferreira, Álvaro Junio Pereira Franco,