کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6871159 1440179 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A linear complementarity based characterization of the weighted independence number and the independent domination number in graphs
ترجمه فارسی عنوان
مشخصه تکمیلی خطی از تعداد استقلال وزنی و تعداد سلطه مستقل در نمودارها
کلمات کلیدی
شماره استقلال وزنی در نمودار، تعداد سلطه مستقل در نمودارها، مشکلات تکمیلی خطی، نمودارهای خوب پوشیده شده لواسز تتا، فرمول های مداوم از مشکلات گسسته،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
The linear complementarity problem is a continuous optimization problem that generalizes convex quadratic programming, characterization of Nash equilibria of bimatrix games and several such problems. This paper presents a continuous optimization formulation for the weighted independence number of a graph by characterizing it as the maximum weighted ℓ1 norm over the solution set of a linear complementarity problem (LCP). The minimum ℓ1 norm of solutions of this LCP forms a lower bound on the independent domination number of the graph. Unlike the case of the maximum ℓ1 norm, this lower bound is in general weak, but we show it to be tight if the graph is a forest. Using methods from the theory of LCPs, we then obtain a stronger variant of the Lovász theta and a new sufficient condition for a graph to be well-covered, i.e., for all maximal independent sets to also be maximum. This latter condition is also shown to be necessary for well-coveredness of forests. Finally, the reduction of the maximum independent set problem to a linear program with (linear) complementarity constraints (LPCC) shows that LPCCs are hard to approximate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 244, 31 July 2018, Pages 155-169
نویسندگان
, ,