کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6873060 | 1440627 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modelling and developing conflict-aware scheduling on large-scale data centres
ترجمه فارسی عنوان
مدل سازی و ایجاد برنامه ریزی آگاهانه در مورد مراکز داده در مقیاس بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مرکز داده، برنامه ریزی، نظریه بازی، درگیری منابع
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Large-scale data centres are the growing trend for modern computing systems. Since a large-scale data centre has to manage a large number of machines and jobs, deploying multiple independent schedulers (termed as distributed schedulers in literature) to make scheduling decisions simultaneously has been shown as an effective way to speed up the processing of large quantity of submitted jobs and data. The key drawback of distributed schedulers is that since these schedulers schedule different jobs independently, the scheduling decisions made by different schedulers may conflict with each other due to the possibility that different scheduling decisions refer to the same subset of the resources in the data centre. Conflicting scheduling decisions cause additional scheduling attempts and consequently increase the scheduling cost. More resources each scheduler demands, higher scheduling cost may incur and longer job response times the users may experience. It is useful to investigate the balanced points in terms of resource demands for each of independent schedulers, so that the distributed schedulers can all achieve decent job performance without experiencing undesired resource competition. To address this issue, we model distributed scheduling and resource conflict using the game theory and conduct the quantitative analysis about scheduling cost and job performance. Further, based on the analysis, we develop the conflict-aware scheduling strategies to reduce the scheduling cost and improve job performance. We have conducted the simulation experiments with workload trace and also real experiments on Amazon Web Services(AWS). The experimental results verify the effectiveness of the proposed modelling approach and scheduling strategies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 86, September 2018, Pages 995-1007
Journal: Future Generation Computer Systems - Volume 86, September 2018, Pages 995-1007
نویسندگان
Bin Wang, Chao Chen, Ligang He, Bo Gao, Jiadong Ren, Zhangjie Fu, Songling Fu, Yongjian Hu, Chang-Tsun Li,