کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6874410 1441160 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An approach for hyperspectral image classification by optimizing SVM using self organizing map
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
An approach for hyperspectral image classification by optimizing SVM using self organizing map
چکیده انگلیسی
In this paper, an efficient technique for the classification of Hyper-Spectral Images taken form satellite is actualized. The Proposed Methodology is based on the concept of optimizing Support Vector Machine (SVM) using Self Organizing Maps (SOM) and then classification of Interior and Exterior Pixels can be done by the comparing the Posterior Probability of each of the pixel intensities. The Methodology applied here works in two phases, first is to train the important features from the image by Optimizing Support Vector Machine using Self Organizing Maps and second is to find the Interior and Exterior Pixels and Comparing Optimal Threshold and Probability. The Experimental results are performed on two datasets which consists of 16 and 9 classes such as corn-no till, corn, soybeans-no till, corn-min till, soybeans-clean till, soybeans min till alfalfa, grass/trees, grass/pasture, grass/pasture-mowed, oats, hay windrowed wheat, woods, stone-steel towers and building-grass-trees-drives. The proposed Methodology Outperforms better in comparison with the existing Classification methodology in terms of Accuracy and Kappa and Confusion Matrix.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 25, March 2018, Pages 252-259
نویسندگان
, , , , , , ,