کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6875475 1441957 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximation and complexity of multi-target graph search and the Canadian traveler problem
ترجمه فارسی عنوان
تقریب و پیچیدگی جستجو چند هدفه و مشکل مسافرتی کانادایی
کلمات کلیدی
مشکل مسافرتی کانادا مشکل جستجو گراف الگوریتم های تقریبی، پیچیدگی محاسباتی، مسیریابی در نااطمینانی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
In the Canadian traveler problem, we are given an edge weighted graph with two specified vertices s and t and a probability distribution over the edges that tells which edges are present. The goal is to minimize the expected length of a walk from s to t. However, we only get to know whether an edge is active the moment we visit one of its incident vertices. Under the assumption that the edges are active independently, we show NP-hardness on series-parallel graphs and give results on the adaptivity gap. We further show that this problem is NP-hard on disjoint-path graphs and cactus graphs when the distribution is given by a list of scenarios. We also consider a special case called the multi-target graph search problem. In this problem, we are given a probability distribution over subsets of vertices. The distribution specifies which set of vertices has targets. The goal is to minimize the expected length of the walk until finding a target. For the independent decision model, we show that the problem is NP-hard on trees and give a (3.59+ϵ)-approximation for trees and a (14.4+ϵ)-approximation for general metrics. For the scenario model, we show NP-hardness on star graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 732, 7 July 2018, Pages 14-25
نویسندگان
, ,