کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6876118 | 689695 | 2014 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Collective additive tree spanners of bounded tree-breadth graphs with generalizations and consequences
ترجمه فارسی عنوان
کلیدهای درختی افزودنی از نمودارهای عرض درختی با تعاریف و عواقب آن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
In this paper, we study collective additive tree spanners for families of graphs enjoying special Robertson-Seymour's tree-decompositions, and demonstrate interesting consequences of obtained results. We say that a graph G admits a system of μ collective additive tree r-spanners (resp., multiplicative tree t-spanners) if there is a system T(G) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree TâT(G) exists such that dT(x,y)â¤dG(x,y)+r (resp., dT(x,y)â¤tâ
dG(x,y)). When μ=1 one gets the notion of additive tree r-spanner (resp., multiplicative tree t-spanner). It is known that if a graph G has a multiplicative tree t-spanner, then G admits a Robertson-Seymour's tree-decomposition with bags of radius at most ât/2â in G. We use this to demonstrate that there is a polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative tree t-spanner, constructs a system of at most log2n collective additive tree O(tlogn)-spanners of G. That is, with a slight increase in the number of trees and in the stretch, one can “turn” a multiplicative tree spanner into a small set of collective additive tree spanners. We extend this result by showing that if a graph G admits a multiplicative t-spanner with tree-width kâ1, then G admits a Robertson-Seymour's tree-decomposition each bag of which can be covered with at most k disks of G of radius at most ât/2â each. This is used to demonstrate that, for every fixed k, there is a polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative t-spanner with tree-width kâ1, constructs a system of at most k(1+log2n) collective additive tree O(tlogn)-spanners of G.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 547, 28 August 2014, Pages 1-17
Journal: Theoretical Computer Science - Volume 547, 28 August 2014, Pages 1-17
نویسندگان
Feodor F. Dragan, Muad Abu-Ata,