کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6876122 689695 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Symmetric digit sets for elliptic curve scalar multiplication without precomputation
ترجمه فارسی عنوان
مجموعه عددی متقارن برای ضریب اسکالر منحنی بیضی شکل بدون پیش تصحیح
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
We describe a method to perform scalar multiplication on two classes of ordinary elliptic curves, namely E:y2=x3+Ax in prime characteristic p≡1mod4, and E:y2=x3+B in prime characteristic p≡1mod3. On these curves, the 4-th and 6-th roots of unity act as (computationally efficient) endomorphisms. In order to optimise the scalar multiplication, we consider a width-w-NAF (Non-Adjacent Form) digit expansion of positive integers to the complex base of τ, where τ is a zero of the characteristic polynomial x2−tx+p of the Frobenius endomorphism associated to the curve. We provide a precomputationless algorithm by means of a convenient factorisation of the unit group of residue classes modulo τ in the endomorphism ring, whereby we construct a digit set consisting of powers of subgroup generators, which are chosen as efficient endomorphisms of the curve.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 547, 28 August 2014, Pages 18-33
نویسندگان
, ,