کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6876257 689734 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Symmetry breaking depending on the chromatic number or the neighborhood growth
ترجمه فارسی عنوان
تقارن قطعی بسته به تعداد رنگ و یا رشد محله
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
We deterministically compute a Δ+1 coloring and a maximal independent set(MIS) in time O(Δ1/2+Θ(1/h)+log∗n) for Δ1+i≤Δ1+i/h, where Δj is defined as the maximal number of nodes within distance j for a node and Δ:=Δ1. Our greedy coloring and MIS algorithms improve the state-of-the-art algorithms running in O(Δ+log∗n) for a large class of graphs, i.e., graphs of (moderate) neighborhood growth with h≥36. We also state and analyze a randomized coloring algorithm in terms of the chromatic number, the run time and the used colors. Our algorithm runs in time O(logχ+log∗n) for Δ∈Ω(log1+1/log∗nn) and χ∈O(Δ/log1+1/log∗nn). For graphs of polylogarithmic chromatic number the analysis reveals an exponential gap compared to the fastest Δ+1 coloring algorithm running in time O(logΔ+logn). The algorithm works without knowledge of χ and uses less than Δ colors, i.e., (1−1/O(χ))Δ with high probability. To the best of our knowledge this is the first distributed algorithm for (such) general graphs taking the chromatic number χ into account. We also improve on the state of the art deterministic computation of (2,c)-ruling sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 509, 21 October 2013, Pages 40-50
نویسندگان
, , ,