کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6876257 | 689734 | 2013 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Symmetry breaking depending on the chromatic number or the neighborhood growth
ترجمه فارسی عنوان
تقارن قطعی بسته به تعداد رنگ و یا رشد محله
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
We deterministically compute a Î+1 coloring and a maximal independent set(MIS) in time O(Î1/2+Î(1/h)+logân) for Î1+iâ¤Î1+i/h, where Îj is defined as the maximal number of nodes within distance j for a node and Î:=Î1. Our greedy coloring and MIS algorithms improve the state-of-the-art algorithms running in O(Î+logân) for a large class of graphs, i.e., graphs of (moderate) neighborhood growth with hâ¥36. We also state and analyze a randomized coloring algorithm in terms of the chromatic number, the run time and the used colors. Our algorithm runs in time O(logÏ+logân) for ÎâΩ(log1+1/logânn) and ÏâO(Î/log1+1/logânn). For graphs of polylogarithmic chromatic number the analysis reveals an exponential gap compared to the fastest Î+1 coloring algorithm running in time O(logÎ+logn). The algorithm works without knowledge of Ï and uses less than Î colors, i.e., (1â1/O(Ï))Î with high probability. To the best of our knowledge this is the first distributed algorithm for (such) general graphs taking the chromatic number Ï into account. We also improve on the state of the art deterministic computation of (2,c)-ruling sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 509, 21 October 2013, Pages 40-50
Journal: Theoretical Computer Science - Volume 509, 21 October 2013, Pages 40-50
نویسندگان
Johannes Schneider, Michael Elkin, Roger Wattenhofer,