کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6883298 | 1444171 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Meta-heuristic based autoscaling of cloud-based parameter sweep experiments with unreliable virtual machines instances
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Cloud Computing is the delivery of on-demand computing resources over the Internet on a pay-per-use basis and is very useful to execute scientific experiments such as parameter sweep experiments (PSEs). When PSEs are executed it is important to reduce both the makespan and monetary cost. We propose a novel tri-objective formulation for the PSEs autoscaling problem considering unreliable virtual machines (VM) pursuing the minimization of makespan, monetary cost and probability of failures. We also propose a new autoscaler based on the Non-dominated Sorting Genetic Algorithm II able to automatically determine the right amount for each type of VM and pricing scheme, as well as the bid prices for the spot instances. Experiments show that the proposed autoscaler achieves great improvements in terms of makespan and cost when it is compared against Scaling First and Spot Instances Aware Autoscaling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 69, July 2018, Pages 364-377
Journal: Computers & Electrical Engineering - Volume 69, July 2018, Pages 364-377
نویسندگان
David A. Monge, Elina Pacini, Cristian Mateos, Carlos GarcÃa Garino,