کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6883405 | 1444172 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved diagnosis of Parkinson's disease using optimized crow search algorithm
ترجمه فارسی عنوان
بهبود علائم بیماری پارکینسون با استفاده از الگوریتم جستجوی کلاسیک بهینه شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Diagnosis of Parkinson's disease at its early stage is important in proper treatment of the patients so they can lead productive lives for as long as possible. Although many techniques have been proposed to diagnose the Parkinson's disease at an early stage but none of them are efficient. In this work, to improve the diagnosis of Parkinson's disease, we have introduced a novel improved and optimized version of crow search algorithm(OCSA). The proposed OCSA can be used in predicting the Parkinson's disease with an accuracy of 100% and help individual to have proper treatment at early stage. The performance of OCSA has been measured for 20 benchmark datasets and the results have been compared with the original chaotic crow search algorithm(CCSA). The experimental result reveals that the proposed nature-inspired algorithm finds an optimal subset of features, maximizing the accuracy and minimizing a number of features selected and is more stable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 68, May 2018, Pages 412-424
Journal: Computers & Electrical Engineering - Volume 68, May 2018, Pages 412-424
نویسندگان
Deepak Gupta, Shirsh Sundaram, Ashish Khanna, Aboul Ella Hassanien, Victor Hugo C. de Albuquerque,