کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6884010 | 1444211 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments
ترجمه فارسی عنوان
یک چارچوب امنیت سایبری برای شناسایی دستگاه لبه مخرب در محاسبات مه و محیط ابرهای محیطی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Device security is one of the major challenges for successful implementation of Internet of Things and fog computing environment in current IT space. Researchers and Information Technology (IT) organizations have explored many solutions to protect systems from unauthenticated device attacks (known as outside device attacks). Fog computing uses network devices (e.g. router, switch and hub) for latency-aware processing of collected data using IoT. Then, identification of malicious edge device is one of the critical activities in data security of fog computing environment. Preventing attacks from malicious edge devices in fog computing environment is more difficult because they have certain granted privileges to use and process the data. In this paper, proposed cybersecurity framework uses three technologies which are Markov model, Intrusion Detection System (IDS) and Virtual Honeypot Device (VHD) to identify malicious edge device in fog computing environment. A two-stage hidden Markov model is used to effectively categorize edge devices in four different levels. VHD is designed to store and maintain log repository of all identified malicious devices which assists the system to defend itself from any unknown attacks in the future. Proposed cybersecurity framework is tested with real attacks in virtual environment created using OpenStack and Microsoft Azure. Results indicated that proposed cybersecurity framework is successful in identifying the malicious device as well as reducing the false IDS alarm rate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Security - Volume 74, May 2018, Pages 340-354
Journal: Computers & Security - Volume 74, May 2018, Pages 340-354
نویسندگان
Amandeep Singh Sohal, Rajinder Sandhu, Sandeep K. Sood, Victor Chang,