کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6892750 | 699336 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center
ترجمه فارسی عنوان
یک الگوریتم هماهنگ تکاملی چند هدفه برای برنامه ریزی انرژی با انرژی در یک مرکز داده سبز
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
برنامه ریزی، انرژی کارآمد، مرکز داده های سبز، بهینه سازی چند هدفه،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
Nowadays, the environment protection and the energy crisis prompt more computing centers and data centers to use the green renewable energy in their power supply. To improve the efficiency of the renewable energy utilization and the task implementation, the computational tasks of data center should match the renewable energy supply. This paper considers a multi-objective energy-efficient task scheduling problem on a green data center partially powered by the renewable energy, where the computing nodes of the data center are DVFS-enabled. An enhanced multi-objective co-evolutionary algorithm, called OL-PICEA-g, is proposed for solving the problem, where the PICEA-g algorithm with the generalized opposition based learning is applied to search the suitable computing node, supply voltage and clock frequency for the task computation, and the smart time scheduling strategy is employed to determine the start and finish time of the task on the chosen node. In the experiments, the proposed OL-PICEA-g algorithm is compared with the PICEA-g algorithm, the smart time scheduling strategy is compared with two other scheduling strategies, i.e., Green-Oriented Scheduling Strategy and Time-Oriented Scheduling Strategy, different parameters are also tested on the randomly generated instances. Experimental results confirm the superiority and effectiveness of the proposed algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 75, November 2016, Pages 103-117
Journal: Computers & Operations Research - Volume 75, November 2016, Pages 103-117
نویسندگان
Hongtao Lei, Rui Wang, Tao Zhang, Yajie Liu, Yabing Zha,