کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6896621 | 1446004 | 2015 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Revenue management for Cloud computing providers: Decision models for service admission control under non-probabilistic uncertainty
ترجمه فارسی عنوان
مدیریت درآمد برای ارائه دهندگان ابر محاسبات: مدل تصمیم گیری برای کنترل پذیرش سرویس تحت عدم اطمینان غیر احتمالی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کنترل پذیرش، عدم اطمینان اطلاعات، مدیریت درآمد، پردازش ابری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
Cloud computing promises the flexible delivery of computing services in a pay-as-you-go manner. It allows customers to easily scale their infrastructure and save on the overall cost of operation. However Cloud service offerings can only thrive if customers are satisfied with service performance. Allowing instantaneous access and flexible scaling while maintaining the service levels and offering competitive prices poses a significant challenge to Cloud computing providers. Furthermore services will remain available in the long run only if this business generates a stable revenue stream. To address these challenges we introduce novel policy-based service admission control models that aim at maximizing the revenue of Cloud providers while taking informational uncertainty regarding resource requirements into account. Our evaluation shows that policy-based approaches statistically significantly outperform first come first serve approaches, which are still state of the art. Furthermore the results give insights in how and to what extent uncertainty has a negative impact on revenue.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 244, Issue 2, 16 July 2015, Pages 637-647
Journal: European Journal of Operational Research - Volume 244, Issue 2, 16 July 2015, Pages 637-647
نویسندگان
Tim Püschel, Guido Schryen, Diana Hristova, Dirk Neumann,