کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6900420 | 1446489 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A method of data mining using Hidden Markov Models (HMMs) for protein secondary structure prediction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The prediction of the secondary structure of proteins is one of the most studied problems in computational biology. However, the accuracy of the predicted secondary structure is insufficient for practical utility. In this paper, we propose an algorithmic approach based on Hidden Markov Models (HMM) to model the problem of prediction. Therefore, HMM are often used for data mining in bioinformatics. In this research, we have built a HMM that models the prediction problem of protein secondary structure. Moreover, two procedures for estimating the probability parameters were performed by the Maximum Likelihood Estimation (MLE) of protein sequences from a public database (Brookhaven PDB). Finally, a new prediction approach based on a posteriori probability of hidden regimes has been implemented. Our model appears to be very efficient on single sequences, with a score of 66.6% by comparing the first results obtained with the real secondary sequence and encouraging for an improvement of the system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 127, 2018, Pages 42-51
Journal: Procedia Computer Science - Volume 127, 2018, Pages 42-51
نویسندگان
Mourad Lasfar, Halima Bouden,