کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6900704 | 1446490 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Web-Spam Features Selection Using CFS-PSO
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes Swarm based hybrid technique CFS-PSO, which combines the characteristics of Correlation Based Feature Selection Technique (CFS) and Particle Swarm Optimization (PSO) strategy. PSO is an optimization approach motivated by swarm conduct which uses the real-number randomness & the global communication among the swarm particles. Feature selection (pre-processing technique) is very crucial part of Data Mining & Machine Learning.The aims of feature selection includes building of simpler & more logical models and improving the performance in terms of reducing the time to build the learning model and increasing the accuracy. We assess the performance of CFS-PSO on WEBSPAM-UK2006 with five classifiers. Experimental results show reduction in original features & increasing the F-measure upto 88% & 45.83% respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 125, 2018, Pages 568-575
Journal: Procedia Computer Science - Volume 125, 2018, Pages 568-575
نویسندگان
Surender Singh, Ashutosh Kumar Singh,