کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6901882 | 1446495 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) prediction of biodiesel dynamic viscosity at 313 K
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The purpose of this work was to investigate the applicability of adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) approaches for modeling the biodiesel blends property including dynamic viscosity at various volume fractions of biodiesel, kinematic viscosity and density of biodiesel blends at 313K. An experimental database of dynamic viscosity of biodiesel blends (biodiesel blend with petro-diesel fuel) was used for developing of models, where the input variables in the network were volume fractions of biodiesel, kinematic viscosity and density of biodiesel blends. The model results were compared with experimental ones for determining the accuracy of the ANFIS and RSM predictions. The developed models produced idealized results and were found to be useful for predicting the dynamic viscosity of biodiesel blends with a limited number of available data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 120, 2017, Pages 521-528
Journal: Procedia Computer Science - Volume 120, 2017, Pages 521-528
نویسندگان
Youssef Kassem, Hüseyin Ãamur, Engin Esenel,