کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6903186 1446751 2018 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DABE: Differential evolution in analogy-based software development effort estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
DABE: Differential evolution in analogy-based software development effort estimation
چکیده انگلیسی
Several feature weight optimization techniques have been proposed for similarity functions in analogy-based estimation (ABE); however, no consensus regarding the method and settings suitable for producing accurate estimates has been reached. We investigate the effectiveness of differential evolution (DE) algorithm, for optimizing the feature weights of similarity functions of ABE by applying five successful mutation strategies. We have named this empirical analysis as DE in analogy-based software development effort estimation (DABE). We have conducted extensive simulation study on the PROMISE repository test suite to estimate the effectiveness of our proposed DABE technique. We find significant improvements in predictive performance of our DABE technique over ABE, particle swarm optimization-based feature weight optimization in ABE, genetic algorithm-based feature weight optimization in ABE, self-adaptive DE-based feature weight optimization ABE, adaptive differential evolution with optional external archive-based feature weight optimization ABE, functional link artificial neural network,artificial neural network with back propagation learning based software development effort estimation (SDEE), and radial basis function-based SDEE.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Swarm and Evolutionary Computation - Volume 38, February 2018, Pages 158-172
نویسندگان
, ,