کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6903433 | 1446990 | 2018 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive region adjustment to improve the balance of convergence and diversity in MOEA/D
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The multiobjective evolutionary algorithm based on decomposition (MOEA/D), which decomposes a multiobjective optimization problem (MOP) into a number of optimization subproblems and optimizes them in a collaborative manner, becomes more and more popular in the field of evolutionary multiobjective optimization. The mechanism of balance convergence and diversity is very important in MOEA/D. In the process of optimization, the chosen solutions must be distinctive and as close as possible to the Pareto front. In this paper, we first explore the relation between subproblems and solutions. Then we propose the adaptive region adjustment strategy to balance the convergence and diversity based on the objective region partition concept. Finally, this strategy is embedded in the MOEA/D framework and then a simple but efficient algorithm is proposed. To demonstrate the effectiveness of the proposed algorithm, comprehensive experiments have been designed. The simulation results show the effectiveness of our proposed algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 70, September 2018, Pages 797-813
Journal: Applied Soft Computing - Volume 70, September 2018, Pages 797-813
نویسندگان
Peng Wang, Bo Liao, Wen Zhu, Lijun Cai, Siqi Ren, Min Chen, Zejun Li, Keqin Li,