کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6903436 | 1446990 | 2018 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new hybrid optimization method combining artificial bee colony and limited-memory BFGS algorithms for efficient numerical optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a new optimization method, which is developed especially for optimization of functions with a large number of local minima, is presented. The proposed method is a hybrid optimization algorithm which employs the artificial bee colony (ABC) and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithms for combining their powerful features. The most prominent feature of the proposed method over other methods is that it provides accurate results and valuable convergence speeds, as well as easy implementation at the same time. Extensive simulation results supported by detailed statistical analyses show that the proposed method can be used for efficient optimization of functions including well-known benchmark functions and CEC2016 competition functions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 70, September 2018, Pages 826-844
Journal: Applied Soft Computing - Volume 70, September 2018, Pages 826-844
نویسندگان
Hasan Badem, Alper Basturk, Abdullah Caliskan, Mehmet Emin Yuksel,