کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6915296 1447394 2018 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A scalable solution strategy for high-order stabilized finite-element solvers using an implicit line preconditioner
ترجمه فارسی عنوان
یک استراتژی راه حل مقیاس پذیر برای حل کننده های عنصر محدود با ثبات بالا با استفاده از یک پیشوند کننده خطی ضمنی
کلمات کلیدی
تثبیت روش های محدود عنصر، روش های مرتب بالا، الگوریتم های مقیاس پذیر، صاف کردن خطی نامنظم، جریانهای آشفته جریان فشرده،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This paper presents a robust, efficient, and strongly scalable solution methodology for simulation of complex turbulent flows on unstructured grids. The compressible Reynolds averaged Navier-Stokes (RANS) equations and the negative Spalart-Allmaras (SA) turbulence model are discretized, in coupled form, using a Streamline Upwind Petrov-Galerkin (SUPG) scheme. The time integration is fully implicit, and the discretized equations are advanced towards a steady-state solution using a pseudo-transient continuation (PTC). For solution of the linearized systems, a preconditioned Krylov solver is used. Seeking robustness, Krylov solvers are commonly preconditioned using incomplete factorization methods such as ILU(k). However, these methods are neither memory efficient, nor strongly scalable. To provide a better alternative, the implicit line solution method, which has been traditionally used in finite-volume methods, is revised and enhanced to solve stiffer linear systems. In the developed method, the lines are generated using a matrix-based approach, which connects the strongly-coupled unknowns. In addition, to improve the robustness of the line solver for high-CFL systems, a dual-CFL strategy, with a lower CFL number in the preconditioner matrix, is developed. Also, it is shown that for high-order continuous finite-element discretizations, the interconnections of the degrees of freedom on a line form a banded matrix which is wider than tridiagonal, but still can be factorized completely without generating any fill-ins. The developed line preconditioner is strongly scalable and, in contrast to the ILU factorization, its convergence behavior does not depend on the number of partitions. Two three-dimensional numerical examples are presented in which the performance of the line preconditioner is compared with that of the ILU(k) preconditioner. This comparison shows that, in addition to robustness improvements, the line preconditioner offers significant benefits in terms of memory efficiency.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 341, 1 November 2018, Pages 956-984
نویسندگان
, ,